Физические свойства аминов и анилина. Особенности свойств анилина

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH 2 CH 2 COOH + HCl → + Cl —

2. Взаимодействие с азотистой кислотой

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH 2 CH 2 COOH + CH 3 I → + I —

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов).

Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

  • первичные амины ;
  • вторичные амины ;
  • третичные амины .

Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

В зависимости от типа радикала амины могут быть:

  • алифатические амины;
  • ароматические (смешанные) амины.

Алифатические предельные амины.

Общая формула C n H 2 n +3 N .

Строение аминов.

Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

Изомерия аминов.

Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

Как называть амины?

В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

Физические свойства аминов.

Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

Получение аминов.

1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

2. Восстановление нитросоединений:

Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

3. Восстановление нитрилов. Используют LiAlH 4 :

4. Ферментатичное декарбоксилирование аминокислот:

Химические свойства аминов.

Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

Водные растворы имеют щелочной характер.

Строение анилина

Простейший представитель класса ароматических аминов - анилин. Это маслянистая жидкость, немного растворимая в воде (рис. 1).

Рис. 1. Анилин

Некоторые другие ароматические амины (рис. 2):

орто-толуидин 2-нафтиламин 4-аминобифенил

Рис. 2. Ароматические амины

Как отражается на свойствах вещества сочетание бензольного кольца и заместителя, имеющего неподеленную электронную пару? Электронная пара азота втягивается в ароматическую систему (рис. 3):

Рис. 3. Ароматическая система

К чему это приводит?

Основные свойства анилина

Электронная пара анилина «втянута» в общую ароматическую систему, и электронная плотность на азоте анилина понижена. Значит, анилин будет более слабым основанием, чем амины и аммиак. Анилин не меняет окраску лакмуса и фенолфталеина.

Электрофильное замещение в анилине

Повышенная электронная плотность в бензольном кольце (за счет втягивания электронной пары азота) приводит к облегчению электрофильного замещения, особенно в орто - и пара-положениях.

Анилин реагирует с бромной водой, при этом сразу образуется

2,4,6-триброманилин - белый осадок (качественная реакция на анилин и другие аминбензолы).

Вспомним: бензол взаимодействует с бромом только в присутствии катализатора (рис. 4).

Рис. 4. Взаимодействие анилина с бромом

Окисление анилина

Высокая электронная плотность в бензольном кольце облегчает окисление анилина. Анилин обычно окрашен в коричневый цвет из-за того, что часть его окисляется кислородом воздуха даже в нормальных условиях.

Применение анилина и аминов

Из продуктов окисления анилина получают анилиновые красители, отличающиеся стойкостью и яркостью.

Из анилина и аминов получают применяющиеся для местного наркоза анестезин и новокаин; противобактериальное средство стрептоцид; популярное обезболивающее и жаропонижающее средство парацетамол (рис. 5):

Анестезин новокаин

стрептоцид парацетамол

(пара-аминобензолсульфамид (пара-ацетоаминофенол)

Рис. 5. Производные анилина

Анилин и амины - сырье для производства пластмасс, фотореактивов, взрывчатых веществ. Взрывчатое вещество гексил (гексанитродифениламин) (рис. 6):

Рис. 6. Гексил

Получение анилина и аминов

1. Нагревание галогеналканов с аммиаком или менее замещенными аминами (реакция Гофмана).

СН3Br + NH3 = CH3NH2 + HBr (правильнее CH3NH3Br);

СH3NH2 + CH3Br = (CH3)2NH + HBr (правильнее (CH3)2NH2Br);

(CH3)2NH + CH3Br = (CH3)3N + HBr (правильнее (CH3)3NHBr).

2. Вытеснение аминов из их солей нагреванием со щелочами:

CH3NH3Cl + KOH = CH3NH2- + KCl + H2O.

3. Восстановление нитро соединений (реакция Зинина):

С6Н5NO2 + 3Fe + 6HCl = C6H5NH2 + 3FeCl2 + 2H2O;

С6Н5NO2 + 3H2 С6Н5NH2 + 2H2O.

Подведение итога урока

На данном уроке была рассмотрена тема «Особенности свойств анилина. Получение и применение аминов». На этом занятии вы изучили особенности свойств анилина, обусловленные взаимным влиянием ароматической структуры и атома, присоединённого к ароматическому кольцу. Также рассмотрели способы получения аминов и области их применения.

Список литературы

Рудзитис Г. Е., Фельдман Ф. Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф. Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин, А. А. Дроздов, В. И. Теренин. - М.: Дрофа, 2008. - 463 с. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В. В. Еремин, Н. Е. Кузьменко, В. В. Лунин, А. А. Дроздов, В. И. Теренин. - М.: Дрофа, 2010. - 462 с. Хомченко Г. П., Хомченко И. Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

№№ 5, 8 (с. 14) Рудзитис Г. Е., Фельдман Ф. Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф. Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012. Сравните свойства аминов предельного ряда и анилина. На примере анилина объясните сущность влияния атомов в молекуле.

Органическая химия. Сайт о химии. Интернет-портал promobud.

Домашняя работа по химии за 11 класс

к учебнику «Химия. 11 класс», Г.Е. Рудзитис, Ф.Г. Фельдман, М.: «Просвещение», 2000 г.

УЧЕБНО-ПРАКТИЧЕСКОЕ ПОСОБИЕ

Глава XI. Амины. Аминокислоты. Азотсодержащие

гетероциклические соединения....................................................................

Задачи к §§1, 2 (стр. 14) .............................................................................

Задачи к §3 (стр. 17) .................................................................................

Глава XII. Белки и нуклеиновые кислоты..............................................

Задачи к §§1, 2 (стр. 24) ...........................................................................

Глава XIII. Синтетические высокомолекулярные вещества и

полимерные материалы на их основе.......................................................

Задачи к §1 (стр. 31) .................................................................................

Задачи к §§2, 3 (стр. 36) ..........................................................................

Глава XIV. Обобщение знаний по курсу органической химии............

Задачи к §§1-5 (стр. 53) ............................................................................

Глава II. Периодический закон и периодическая система

Д.И. Менделеева на основе учения о строении атома...........................

Задачи к §§1-3 (стр. 70) ............................................................................

Глава III. Строение вещества.....................................................................

Задачи к §§1–4 (стр. 84) ...........................................................................

Глава IV. Химические реакции..................................................................

Задачи к §§1, 2 (стр. 93) ...........................................................................

Глава V. Металлы........................................................................................

Задачи к §§1-10 (стр. 120) ........................................................................

Глава VI. Неметаллы.................................................................................

Задачи к §§1-3 (стр.140) .........................................................................

Глава VII. Генетическая связь органических и неорганических

веществ.........................................................................................................

Задачи к §§1, 2 (стр.144) ........................................................................

Глава XI. Амины. Аминокислоты. Азотсодержащие гетероциклические соединения

Задачи к §§1, 2 (стр. 14)

Вопрос № 1

Напишите химические формулы веществ (по два примера), относящихся: а) к нитросоединениям; б) к сложным эфирам азотной кислоты.

а) К нитросоединениям относятся нитроэтан и 2-нитропропан:

СН3 –СН2 –NО2

СН3 –СН–СН3

NО2

нитроэтан

2-нитропропан

б) Примерами эфиров азотной кислоты могут служить метилнитрат (метиловый эфир азотной кислоты) и этилнитрат (этиловый эфир азотной кислоты).

СН3 –О–NО2 СН3 –СН2 –О–NО2 метилнитрат этилнитрат

Вопрос № 2

Что такое амины и каково строение их молекул?

Аминами называют производные углеводородов, содержащие

в молекуле аминогруппу –NH2 . Можно рассматривать амины также как производные аммиака, в которых один или несколько водородных атомов замещены на углеводородные радикалы. Строение молекул предельных аминов сходно со строением молекулы аммиака. В молекуле метиламина СН3 –NН2 атом углерода находится

в состоянии sp3 -гибридизации. Связь между атомами азота и углерода образуется за счет одной из гибридных sp3 -opбитaлeй атома углерода и р-орбитали атома азота.

Вопрос № 3

Исходя из строения молекул укажите сходные и отличительные свойства аминов и аммиака.

В молекулах аммиака и аминов у атома азота есть неподеленная электронная пара. За счет этой электронной пары возможно взаимодействие с ионам водорода Н+ :

Н3 N: + Н+ = NН4 +

СН3 –Н2 N: + Н+ = CH3 –NH3 +

При реакциях аминов и аммиака с кислотой образуются соли аммония:

NH3 + НCl = NH4 Cl (хлорид аммония)

При растворении аммиака или аминов в воде в небольшой степени образуются гидроксид-ионы и раствор становится щелочным. Аммиак и амины являются слабыми основаниями:

NH3 + Н2 О = NН4 + + ОН–

СН3 –NH2 + Н2 O = СН3 –NH3 + + ОН–

Однако по сравнению с аммиаком амины являются более сильными основаниями (объяснение см.: Ответ на вопрос 4).

Вопрос № 4

Даны амины: а) метиламин; б) диметиламин; в) триметиламин. Напишите их структурные формулы и поясните, у кого из них основные свойства выражены сильнее, а у какого – слабее. Почему?

Основные свойства аминов, как и аммиака, обусловлены наличием у атома азота неподеленной электронной пары. Поэтому, чем больше электронная плотность на атоме азота, тем сильнее выражены основные свойства амина. В молекуле метиламина атом азота соединен с метальным радикалом. Электроотрицательность водорода меньше, чем углерода и азота, поэтому происходит смещение электронов от трех атомов водорода к атому углерода и затем

– к атому азота (на рисунке показано стрелками):

H C NH2

В результате электронная плотность на атоме азота увеличивается и метиламин является более сильным основанием, чем аммиак. В молекуле диметиламина атом водорода соединен с двумя метальными радикалами, и к атому азота передается электронная плотность от шести атомов водорода, поэтому электронная плотность на атоме азота больше, чем в молекуле метиламина, и диметиламин является более сильным основанием, чем метиламин. Наконец, в молекуле триметиламина три метильных радикала при атоме азота, и происходит смещение электронов к атому азота от девяти атомов водорода. Поэтому триметиламин является, в свою очередь, более сильным основанием, чем диметиламин. Таким образом, у метиламина основные свойства выражены слабее всего, а у триметиламина – сильнее всего.

Вопрос № 5

Составьте уравнения реакций, в результате которых можно осуществить следующие превращения:

NH3 HSO4

CH3 NH2

(CH3

NH3 )2 SO4

При реакции метиламина с серной кислотой образуется сульфат метиламмония (СН3 –NH3 )2 SО4 (при избытке метиламина) или гидросульфат метиламмония СН3 –NH3 НSO4 (при избытке серной кислоты):

2CH3 –NH2 + H2 SО4 = (CH3 –NH3 )2 SО4

CH3 –NH2 + H2 SО4 = CH3 –NH3 HSО4

При действии на сульфат или гидросульфат метиламмония раствора щелочи выделяется метиламин:

(СН3 –NН3 )2 SО4 + 2NaOH = 2CH3 –NH2 + Na2 SО4 + 2H2 О СН3 –NH3 НSO4 + 2NaOH = CH2 –NH2 + Na2 SО4 + 2H2 О

Вопрос № 6

Сравните свойства: а) аминов предельного ряда и анилина; б) спиртов предельного ряда и фенола. Какие свойства у этих веществ сходны и чем они отличаются друг от друга? Почему? Составьте уравнения реакций, подтверждающие выводы.

а) И предельные амины, и анилин проявляют основные свойства. Например, все амины реагируют с кислотами с образованием солей:

СН3 –NH2 + НCl = СН3 –NН3 Сl (хлорид метиламмония)

Однако фенол реагирует с гидроксидом натрия, а спирт – нет:

Н2 О

Таким образом, спирты и фенолы проявляют кислотные свойства, но у фенолов они выражены сильнее. Это объясняется тем, что бензольное кольцо притягивает к себе электроны от атома кислорода, вследствие этого электроны атома водорода сильнее смещаются к атому кислорода. Связь между атомами водорода и кислорода становится более полярной и поэтому разрывается легче, чем в спиртах.

Вопрос № 7

На примере анилина объясните сущность взаимного влияния групп атомов в молекуле.

В молекуле анилина происходит смещение электронной плотности от аминогруппы к бензольному кольцу. В результате электронная плотность на атоме азота уменьшается, основные свойства аминогруппы ослабевают по сравнению с аминогруппой в предельных аминах. С другой стороны, это приводит к тому, что электронная плотность в бензольном кольце увеличивается, поэтому реакции замещения в анилине протекают легче, чем в бензоле. Например, при действии на бензол брома реакция замещения протекает только в присутствии катализатора – бромида железа – и замещается только один атом водорода, образуется бромбензол:

Вопрос № 8

Составьте уравнения реакций, в результате которых можно синтезировать анилин из следующих исходных веществ: а) метана; б) известняка, угля и воды.

а) Из метана при сильном нагревании можно получить ацетилен:

2СН4

НС≡ СН + 3Н2

Из трех молекул ацетилена может образоваться молекула бензола (реакция тримеризации):

3HC≡ CH t, кат

При действии на бензол смеси концентрированной азотной кислоты и концентрированной серной кислоты происходит замещение атома водорода на нитрогруппу и образуется нитробензол:

б) При сильном нагревании карбонат кальция разлагается на оксид кальция и оксид углерода (IV):

СаСО3 = СаО + СО2

Оксид кальция при высокой температуре реагирует с углем с образованием карбида кальция:

2СаО + 5С = 2СаС2 + СО2

При действии на карбид кальция воды получается ацетилен:

СаС2 + 2H2 O = НС≡ СН + Са(ОН)2

Вопрос № 9

Изобразите структурные формулы изомерных веществ, молекулярная формула которых C5 H13 N. Под формулами приведите названия веществ.

Существует 15 изомерных аминов, соответствующих формуле

C5 H13 N:

СН3 –СН2 –СН2 –СН2 –СН2 –NН2

СН3 –СН2 –СН2 –СН–СН3

NН2

1-аминопентан

2-аминопентан

СН3 –СН2 –СН–СН2 –СН3

СН3 –СН2 –СН–СН2 –NН2

NН2

СН3

3-аминопентан

1-амино-2-метилбутан

NН2

СН3 –СН–СН2 –СН2 –NН2

СН3 –СН2 –С–СН3

СН3

СН3

1-амино-3-метилбутан

2-амино-2-метилбутан

CН3

СН3 –СН–СН–СН3

СН3 –С–СН2 –NН2

СН3 NН2

СН3

2-амино-3-метилбутан

1-амино-2,2-диметилпропан

СН3 –СН2 –СН2 –СН2 –NН

СН3 –СН2 –СН2 –NН–СН2 –СН3

СН3

метилбутиламин

этилпропиламин

СН3 –СН–СН2 –NН

СН3 –СН–NН–СН2 –СН3

СН3

СН3

СН3

метилизобутиламин

этилизопропиламин

СН3

СН3 –СН2 –СН–NН

СН3 –С–NН–СН3

СН3

СН3

СН3

метилвтор-бутиламин

метилтрет-бутиламин

СН3

СН3

СН3

СН3 –СН2 –N

СН3 –СН2 –СН2 –N

СН3 –СН–N

СН2

СН3

СН3

СН3

СН3

диметилпропиламин

диметилизопропиламин

диэтилметиламин

Вопрос № 10

Как получают аминокислоты? Составьте уравнения реакций.