Экосистема определение и структура ее уровни организации. Общая структура экосистем

В природе любой вид, популяция и даже отдельная особь живут не изолированно друг от друга и среды своего обитания, а, напротив, испытывают многочисленные взаимные влияния. Биотические сообщества или биоценозы - сообщества взаимодействующих живых организмов, представляющие собой устойчивую систему, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов.

Для биоценоза характерны определенные структуры : видовая, пространственная и трофическая.

Органические компоненты биоценоза неразрывно связаны с неорганическими - почвой, влагой, атмосферой, образуя вместе с ними устойчивую экосистему - биогеоценоз .

Биогеноценоз – саморегулирующаяся экологическая система, образованная совместно обитающими и взаимодействующими между собой и с неживой природой, популяциями разных видов в относительно однородных условиях среды.

Экологические системы

Функциональные системы, включающие в себя сообщества живых организмов разных видов и их среду обитания. Связи между компонентами экосистемы возникают, прежде всего, на основе пищевых взаимоотношений и способов получения энергии.

Экосистема

Совокупность видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз ), животных (зооценоз ), микроорганизмов (микробоценоз ).

Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга - биосферу , обладающую устойчивостью и другими свойствами экосистемы.

Существование экосистемы возможно благодаря постоянному притоку энергии извне - таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.

Учение о биогеоценозах разработано В.Н. Сукачевым. Термин «экосистема » введен в употребление английским геоботаником А. Тенсли в 1935 г., термин «биогеоценоз » - академиком В.Н. Сукачевым в 1942 г. В биогеоценозе обязательно наличие в качестве основного звена растительного сообщества (фитоценоз), обеспечивающего потенциальную бессмертность биогеоценоза за счет энергии, вырабатываемой растениями. Экосистемы могут не содержать фитоценоз.

Фитоценоз

Растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории.

Его характеризуют :

- определенный видовой состав,

- жизненные формы,

- ярусность (надземная и подземная),

- обилие (частота встречаемости видов),

- размещение,

- аспект (внешний вид),

- жизненность,

- сезонные изменения,

- развитие (смена сообществ).

Ярусность (этажность)

Один из характерных признаков растительного сообщества, заключающийся как бы в поэтажном его разделении как в надземном, так и в подземном пространстве.

Надземная ярусность позволяет лучше использовать свет, а подземная - воду и минеральные вещества. Обычно в лесу можно выделить до пяти ярусов: верхний (первый) - высокие деревья, второй - невысокие деревья, третий - кустарники, четвертый - травы, пятый - мхи.

Подземная ярусность - зеркальное отражение надземной: глубже всех уходят корни деревьев, близ поверхности почвы расположены подземные части мхов.

По способу получения и использования питательных веществ все организмы делятся на автотрофы и гетеротрофы . В природе возникает непрерывный круговорот биогенных веществ, необходимых для жизни. Химические вещества извлекаются автотрофами из окружающей среды и через гетеротрофы вновь в нее возвращаются. Этот процесс принимает очень сложные формы. Каждый вид использует лишь часть содержащейся в органическом веществе энергии, доводя его распад до определенной стадии. Таким образом, в процессе эволюции в экологических системах сложились цепи и сети питания .

Большинство биогеоценозов имеют сходную трофическую структуру . Основу их составляют зеленые растения - продуценты. Обязательно присутствуют растительноядные и плотоядные животные: потребители органического вещества - консументы и разрушители органических остатков - редуценты .

Количество особей в пищевой цепи последовательно уменьшается, численность жертв больше численности их потребителей, так как в каждом звене пищевой цепи при каждом переносе энергии 80-90% ее теряется, рассеиваясь в виде теплоты. Поэтому число звеньев в цепи ограничено (3-5).

Видовое разнообразие биоценоза представлено всеми группами организмов - продуцентами, консументами и редуцентами.

Нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом. Например, вырубка леса приводит к изменению видового состава насекомых, птиц, а, следовательно, и зверей. На безлесном участке будут складываться другие цепи питания и сформируется другой биоценоз, что займет не один десяток лет.

Цепь питания (трофическая или пищевая )

Взаимосвязанные виды, последовательно извлекающие органическое вещество и энергию из исходного пищевого вещества; при этом каждое предыдущее звено цепи является пищей для последующего.

Цепи питания в каждом природном участке с более или менее однородными условиями существования составлены комплексами взаимосвязанных видов, питающимися друг другом и образующими самоподдерживающуюся систему, в которой осуществляется круговорот веществ и энергии.

Компоненты экосистемы:

- Продуценты - автотрофные организмы (в основном зеленые растения) - единственные производители органического вещества на Земле. Богатое энергией органическое вещество в процессе фотосинтеза синтезируется из бедных энергией неорганических веществ (Н 2 0 и С0 2).

- Консументы - растительноядные и плотоядные животные, потребители органического вещества. Консументы могут быть растительноядными, когда они непосредственно используют продуценты, или плотоядными, когда они питаются другими животными. В цепи питания они чаще всего могут иметь порядковый номер с I по IV .

- Редуценты - гетеротрофные микроорганизмы (бактерии) и грибы - разрушители органических остатков, деструкторы. Их еще называют санитарами Земли.

Трофический (пищевой) уровень - совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии в экосистеме.

  1. первый трофический уровень всегда занимают продуценты (растения),
  2. второй - консументы I порядка (растительноядные животные),
  3. третий - консументы II порядка - хищники, питающиеся растительноядными животными),
  4. четвертый - консументы III порядка (вторичные хищники).

Различают следующие виды пищевых цепей:

В пастбищной цепи (цепи выедания ) основным источником пищи служат зеленые растения. Например: трава -> насекомые -> земноводные -> змеи -> хищные птицы.

- детритные цепи (цепи разложения) начинаются с детрита - отмершей биомассы. Например: листовой опад -> дождевые черви -> бактерии. Особенностью детритных цепей является также то, что в них часто продукция растений не потребляется непосредственно растительноядными животными, а отмирает и минерализуется сапрофитами. Детритные цепи характерны также для экосистем океанических глубин, обитатели которых питаются мертвыми организмами, опустившимися вниз из верхних слоев воды.

Сложившиеся в процессе эволюции взаимоотношения между видами в экологических системах, при которых многие компоненты питаются разными объектами и сами служат пищей различным членам экосистемы. Упрощенно пищевую сеть можно представить как систему переплетающихся пищевых цепей .

Организмы разных пищевых цепей, получающие пищу через равное число звеньев этих цепей, находятся на одном трофическом уровне . В то же время разные популяции одного и того же вида, входящие в различные пищевые цепи, могут находиться на разных трофических уровнях . Соотношение различных трофических уровней в экосистеме можно изобразить графически в виде экологической пирамиды .

Экологическая пирамида

Способ графического отображения соотношения различных трофических уровней в экосистеме - бывает трех типов :

Пирамида численности отражает численность организмов на каждом трофическом уровне;

Пирамида биомасс отражает биомассу каждого трофического уровня;

Пирамида энергии показывает количество энергии, прошедшее через каждый трофический уровень в течение определенного промежутка времени.

Правило экологической пирамиды

Закономерность, отражающая прогрессивное уменьшение массы (энергии, числа особей) каждого последующего звена пищевой цепи.

Пирамида численности

Экологическая пирамида, отражающая число особей на каждом пищевом уровне. В пирамиде чисел не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ, однако всегда прослеживается главная тенденция - уменьшение числа особей от звена к звену. Например, в степной экосистеме численность особей распределяется так: продуценты - 150000, травоядные консументы - 20000, плотоядные консументы - 9000 экз./ар. Биоценоз луга характеризуется следующей численностью особей на площади 4000 м 2: продуценты - 5 842 424, растительноядные консументы I порядка - 708 624, плотоядные консументы II порядка - 35 490, плотоядные консументы III порядка - 3.

Пирамида биомасс

Закономерность, согласно которой количество растительного вещества, служащего основой цепи питания (продуцентов), примерно в 10 раз больше, чем масса растительноядных животных (консументов I порядка), а масса растительноядных животных в 10 раз больше, чем плотоядных (консументов II порядка), т. е. каждый последующий пищевой уровень имеет массу в 10 раз меньшую, чем предыдущий. В среднем из 1000 кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить 10 кг своей биомассы, вторичные хищники - 1 кг.

Пирамида энергии

выражает закономерность, согласно которой поток энергии постепенно уменьшается и обесценивается при переходе от звена к звену в цепи питания. Так, в биоценозе озера зеленые растения - продуценты - создают биомассу, содержащую 295,3 кДж/см 2 , консументы I порядка, потребляя биомассу растений, создают свою биомассу, содержащую 29,4 кДж/см 2 ; консументы II порядка, используя в пищу консументов I порядка, создают свою биомассу, содержащую 5,46 кДж/см 2 . Потеря энергии при переходе от консументов I порядка к консументам II порядка, если это теплокровные животные, увеличивается. Это объясняется тем, что у данных животных много энергии уходит не только на построение своей биомассы, но и на поддержание постоянства температуры тела. Если сравнить выращивание теленка и окуня, то одинаковое количество затраченной пищевой энергии даст 7 кг говядины и лишь 1 кг рыбы, так как теленок питается травой, а окунь-хищник - рыбой.

Таким образом , первые два типа пирамид имеют ряд существенных недостатков:

Пирамида биомасс отражает состояние экосистемы на момент отбора пробы и, следовательно, показывает соотношение биомассы в данный момент и не отражает продуктивность каждого трофического уровня (т. е. его способность образовывать биомассу в течение определенного промежутка времени). Поэтому в том случае, когда в число продуцентов входят быстрорастущие виды, пирамида биомасс может оказаться перевернутой.

Пирамида энергии позволяет сравнить продуктивность различных трофических уровней, поскольку учитывает фактор времени. Кроме того, она учитывает разницу в энергетической ценности различных веществ (например, 1 г жира дает почти в два раза больше энергии, чем 1 г глюкозы). Поэтому пирамида энергии всегда суживается кверху и никогда не бывает перевернутой.

Экологическая пластичность

Степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды. Экологически пластичные виды имеют широкую норму реакции , т. е. широко приспособлены к разной среде обитания (рыбы колюшка и угорь, некоторые простейшие живут как в пресных, так и в соленых водах). Узкоспециализированные виды могут существовать лишь в определенной среде: морские животные и водоросли - в соленой воде, речные рыбы и растения лотос, кувшинка, ряска обитают только в пресной воде.

В целом экосистема (биогеоценоз) характеризуется следующими показателями :

Видовым разнообразием,

Плотностью видовых популяций,

Биомассой.

Биомасса

Общее количество органического вещества всех особей биоценоза или вида с заключенной в нем энергией. Биомассу выражают обычно в единицах массы в пересчете на сухое вещество единицы площади или объема. Биомассу можно определить отдельно для животных, растений или отдельных видов. Так, биомасса грибов в почве составляет 0,05-0,35 т/га, водорослей - 0,06-0,5, корней высших растений - 3,0-5,0, дождевых червей - 0,2-0,5, позвоночных животных - 0,001-0,015 т/га.

В биогеоценозах различают первичную и вторичную биологическую продуктивность :

ü Первичная биологическая продуктивность биоценозов - общая суммарная продуктивность фотосинтеза, представляющая собой результат деятельности автотрофов - зеленых растений, например, сосновый лес 20- 30-летнего возраста за год производит 37,8 т/га биомассы.

ü Вторичная биологическая продуктивность биоценозов - общая суммарная продуктивность гетеротрофных организмов (консументов), которая образуется за счет использования веществ и энергии, накопленных продуцентами.

Популяции. Структура и динамика численности.

Каждый вид на Земле занимает определенный ареал , так как он способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида могут существенно отличаться, что приводит к распаду вида на элементарные группировки особей - популяции.

Популяция

Совокупность особей одного вида, занимающих обособленную территорию в пределах ареала вида (с относительно однородными условиями обитания), свободно скрещивающихся друг с другом (имеющих общий генофонд) и изолированных от других популяций данного вида, обладающих всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды. Важнейшими характеристиками популяции являются ее структура (возрастной, половой состав) и динамика численности.

Под демографической структурой популяции понимают ее половой и возрастной состав.

Пространственная структура популяции - это особенности размещения особей популяции в пространстве.

Возрастная структура популяции связана с соотношением особей различных возрастов в популяции. Особи одного возраста объединяют в когорты - возрастные группы.

В возрастной структуре популяций растений выделяют следующие периоды :

Латентный - состояние семени;

Прегенеративный (включает состояния проростка, ювенильного растения, имматурного и виргинильного растений);

Генеративный (обычно подразделяется на три подпериода - молодые, зрелые и старые генеративные особи);

Постгенеративный (включает состояния субсенильного, сенильного растений и фазу отмирания).

Принадлежность к определенному возрастному состоянию определяется по биологическому возрасту - степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков.

В популяциях животных также можно выделить различные возрастные стадии . Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии:

Личинки,

Куколки,

Имаго (взрослого насекомого).

Характер возрастной структуры популяции зависит от типа кривой выживания, свойственной данной популяции.

Кривая выживания отражает уровень смертности в различных возрастных группах и представляет собой снижающуюся линию:

  1. Если уровень смертности не зависит от возраста особей, отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни (тип I ). Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии.
  2. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение вследствие естественной (физиологической) смертности (тип II ). Близкий к этому типу характер кривой выживания свойствен человеку (хотя кривая выживания человека несколько более пологая и является чем-то средним между типами I и II). Этот тип носит название типа дрозофилы : именно его демонстрируют дрозофилы в лабораторных условиях (не поедаемые хищниками).
  3. Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до старших возрастов. Тип носит название типа устрицы (тип III ).

Половая структура популяции

Соотношение полов имеет прямое отношение к воспроизводству популяции и ее устойчивости.

Выделяют первичное, вторичное и третичное соотношение полов в популяции:

- Первичное соотношение полов определяется генетическими механизмами - равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX - женского. В этом случае первичное соотношение полов 1:1, т. е. равновероятно.

- Вторичное соотношение полов - это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим Х- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 °С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных - преимущественно самки.

- Третичное соотношение полов - соотношение полов среди взрослых животных.

Пространственная структура популяции отражает характер размещения особей в пространстве.

Выделяют три основных типа распределения особей в пространстве:

- единообразное или равномерное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга); встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (например, у хищных рыб);

- конгрегационное или мозаичное («пятнистое», особи размещаются в обособленных скоплениях); встречается намного чаше. Оно связано с особенностями микросреды или поведения животных;

- случайное или диффузное (особи распределены в пространстве случайным образом) - можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремления к объединению в группы (например, у жука в муке).

Численность популяции обозначается буквой N. Отношение прироста N к единице времени dN / dt выражает мгновенную скорость изменения численности популяции, т. е. изменение численности в момент времени t. Прирост популяции зависит от двух факторов - рождаемости и смертности при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции :

Устойчивость популяции

Это ее способность находиться в состоянии динамического (т. е. подвижного, изменяющегося) равновесия со средой: изменяются условия среды - изменяется и популяция. Одним из важнейших условий устойчивости является внутреннее разнообразие. Применительно к популяции это механизмы поддержания определенной плотности популяции.

Выделяют три типа зависимости численности популяции от ее плотности .

Первый тип (I) - самый распространенный, характеризуется уменьшением роста популяции при увеличении ее плотности, что обеспечивается различными механизмами. Например, для многих видов птиц характерны снижение рождаемости (плодовитости) при увеличении плотности популяции; увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции; изменение возраста наступления половой зрелости в зависимости от плотности популяции.

Третий тип ( III ) характерен для популяций, в которых отмечается «эффект группы», т. е. определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей, что присуще большинству групповых и социальных животных. Например, для возобновления популяций разнополых животных как минимум необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.

Тематические задания

А1. Биогеоценоз образован

1) растениями и животными

2) животными и бактериями

3) растениями, животными, бактериями

4) территорией и организмами

А2. Потребителями органического вещества в лесном биогеоценозе являются

1) ели и березы

2) грибы и черви

3) зайцы и белки

4) бактерии и вирусы

А3. Продуцентами в озере являются

2) головастики

А4. Процесс саморегуляции в биогеоценозе влияет на

1) соотношение полов в популяциях разных видов

2) численность мутаций, возникающих в популяциях

3) соотношение хищник – жертва

4) внутривидовую конкуренцию

А5. Одним из условий устойчивости экосистемы может служить

1) ее способность к изменениям

2) разнообразие видов

3) колебания численности видов

4) стабильность генофонда в популяциях

А6. К редуцентам относятся

2) лишайники

4) папоротники

А7. Если общая масса полученной потребителем 2-го порядка равна 10 кг, то какова была совокупная масса продуцентов, ставших источником пищи для данного потребителя?

А8. Укажите детритную пищевую цепь

1) муха – паук – воробей – бактерии

2) клевер – ястреб – шмель – мышь

3) рожь – синица – кошка – бактерии

4) комар – воробей – ястреб – черви

А9. Исходным источником энергии в биоценозе является энергия

1) органических соединений

2) неорганических соединений

4) хемосинтеза

1) зайцами

2) пчелами

3) дроздами-рябинниками

4) волками

А11. В одной экосистеме можно встретить дуб и

1) суслика

3) жаворонка

4) синий василек

А12. Сети питания – это:

1) связи между родителями и потомством

2) родственные (генетические) связи

3) обмен веществ в клетках организма

4) пути передачи веществ и энергии в экосистеме

А13. Экологическая пирамида чисел отражает:

1) соотношение биомасс на каждом трофическом уровне

2) соотношение масс отдельного организма на разных трофических уровнях

3) структуру пищевой цепи

4) разнообразие видов на разных трофических уровнях

Основные компоненты экосистемы. Экосистемы представляют собой элементарную функциональную единицу живой природы, в которой осуществляются взаимодействия между всеми ее компонентами, происходит круговорот веществ и энергии. В состав экосистемы входят неорганические вещества (C, N, CO 2 , H 2 O и др.), которые включаются в круговорот, и органические соединения (белки, углеводы, жиры и др.), связывающие биотическую (живую) и абиотическую (неживую) ее части. Для каждой экосистемы характерна определенная среда (воздушная, водная, наземная), включающая климатический режим и определенный набор параметров физической среды (температуру, влажность и т. п.). По роли, которую выполняют организмы в экосистеме, их подразделяют на три группы:

продуценты – автотрофные организмы, главным образом зеленые растения, которые способны создавать органические вещества из неорганических;

консументы – гетеротрофные организмы, преимущественно животные, которые питаются другими организмами или частичками органического вещества;

редуценты – гетеротрофные организмы, преимущественно бактерии и грибы, обеспечивающие разложение органических соединений.

Окружающая среда и живые организмы взаимосвязаны процессами циркуляции вещества и энергии.

Продуценты улавливают солнечный свет и переводят его энергию в энергию химических связей синтезируемых ими органических соединений. Консументы, поедая продуцентов, разрывают эти связи и используют высвобождающуюся при этом энергию для построения своего собственного тела. Редуценты ведут себя аналогичным образом, но в качестве источника пищи используют либо мертвые тела, либо продукты, выделяющиеся в процессе жизнедеятельности организмов. При этом редуценты разлагают сложные органические молекулы до простых неорганических соединений – углекислого газа, окислов азота, воды, солей аммиака и т. д. В результате они возвращают в окружающую среду вещества, изъятые из нее растениями, и эти вещества могут вновь утилизироваться продуцентами. Цикл замыкается. Надо заметить, что все живые существа в определенной степени являются редуцентами. В процессе метаболизма они извлекают необходимую им энергию при расщеплении органических соединений, выделяя в качестве конечных продуктов углекислый газ и воду.

В экосистемах живые компоненты выстраиваются в цепочки (пищевые или трофические(*) цепи), в которых каждое предыдущее звено служит пищей для последующего. Каждое такое звено представляет собой определенный трофическийуровень, поскольку находящиеся на нем организмы получают энергию через одинаковое число посредников. В основании трофической цепи находятся продуценты, которые из неорганического вещества и энергии света создают живое вещество – первичную биомассу . Второе звено составляют потребляющие эту первичную биомассу животные-фитофаги – это консументы первого порядка. Они, в свою очередь, служат пищей для организмов, составляющих следующий трофический уровень – консументов второго порядка. Далее идут консументы третьего порядка и т. д. Приведем пример простой цепи:

А вот пример более сложной цепи:

В естественных экосистемах пищевые цепи не изолированы одна от другой, а тесно переплетены. Они формируют пищевые сети, принцип образования которых заключается в том, что каждый продуцент может служить пищей не одному, а многим животным-фитофагам, которые, в свою очередь, могут быть съедены разными видами консументов второго порядка и т. д.

Пищевые сети составляют каркас экосистем, и нарушения в них могут приводить к непредсказуемым последствиям. Особенно ранимыми оказываются экосистемы с относительно простыми пищевыми цепями, т. е. те, в которых круг объектов питания конкретного вида узок (например, многие экосистемы Арктики). Выпадение одного из звеньев может повлечь за собой распад всей трофической сети и деградацию экосистемы в целом.

Наглядным примером сложности связей между организмами в экосистемах могут послужить те неожиданные последствия, к которым привела попытка борьбы с малярией на Калимантане (один из островов Индонезии) в 50-х годах XX в. Чтобы уничтожить малярийного комара (переносчика возбудителя малярии), остров стали опрыскивать инсектицидом ДДТ, содержащим хлорорганические соединения. Комары, как и ожидалось, погибли, однако возникли осложнения. ДДТ попал и в организм тараканов, которые оказались более стойкими к нему. Тараканы не погибали, но становились такими медлительными, что в значительно больших, чем обычно, количествах поедались ящерицами. Попавший вместе с тараканами в организм ящериц инсектицид вызывал у них нервные расстройства и ослабление рефлексов. Поэтому ящерицы становились легкой добычей кошек, и их численность резко упала. Ящерицы – хищники, питающиеся, в том числе, и гусеницами, которые выедают тростниковые крыши домов местных жителей. Гусеницы расплодились в огромном количестве и крыши стали проваливаться. Но это было только полбеды. От отравления ДДТ, попавшим в организм при питании отравленными ящерицами, стали гибнуть кошки. Это привело к тому, что поселки наводнили крысы, которые пришли из леса и принесли на себе блох, зараженных чумной палочкой. Итак, боролись с малярией, а получили чуму. Вот к чему приводят мероприятия, проведенные без надлежащей экологической экспертизы. Жители Калимантана предпочли чуму малярии. Поэтому опрыскивание инсектицидом прекратили, а для борьбы с крысами в джунгли на парашютах сбросили большую партию кошек.

Трофическая структура экосистемы и энергетика. Зеленые растения улавливают 1–2% попадающей на них энергии солнца, преобразуя ее в энергию химических связей. Консументы первого порядка усваивают около 10% всей энергии, заключенной в съеденных ими растениях. На каждом последующем уровне теряется 10 – 20% энергии предыдущего. Подобная закономерность находится в полном соответствии со вторым началом (законом) (термодинамики подробнее см. в § 00). Согласно этому закону при любых трансформациях энергии значительная ее часть рассеивается в виде недоступной для использования тепловой энергии. Таким образом, энергия быстро убывает в пищевых цепях, что ограничивает их длину. С этим связано и уменьшение на каждом последующем уровне численности и биомассы (количество живого вещества, выраженное в единицах массы или калориях) живых организмов. Однако это правило, как мы увидим ниже, имеет ряд исключений.

В основе устойчивости каждой экосистемы лежит определенная трофическая структура, которая может быть выражена в виде пирамид численности, биомассы и энергии. При их построении значения соответствующего параметра для каждого трофического уровня изображается в виде прямоугольников, поставленных друг на друга.

Форма пирамид численности в значительной степени зависит от размера организмов на каждом трофическом уровне, особенно продуцентов.

Например, численность деревьев в лесу, значительно ниже, чем травы на лугу или фитопланктона (микроскопические планктонные организмы-фотосинтетики) в пруду.

Экосистема - это биологическая система, которая состоит из совокупности живых организмов, их среды обитания, а также системы связей, которые осуществляют обмен энергии между ними. В настоящее время данный термин является основным понятием экологии.

Строение

Изучаются сравнительно недавно. Ученые выделяют в ней два основных компонента - биотический и абиотический. Первый делится на гетеротрофный (включает в себя организмы, которые получают энергию в результате окисления органического вещества - консументы и редуценты) и получают первичную энергию для осуществления фотосинтеза и хемосинтеза, т. е. продуценты).

Единственным и самым важным источником энергии, необходимой для существования всей экосистемы, являются продуценты, которые усваивают энергию солнца, тепла и химических связей. Поэтому автотрофы являются представителями первого всей экосистемы. Второй, третий и четвертый уровни формируются за счет консументов. Замыкаются редуцентами, способными перевести неживое органическое вещество в абиотический компонент.

Свойства экосистемы, кратко о которых вы можете прочитать в данной статье, подразумевают возможность естественного развития и возобновления.

Главные компоненты экосистемы

Структура и свойства экосистемы - эго главные понятия, которыми занимается экология. Принято выделять такие показатели:

Климатический режим, температура окружающей среды, а также влажность и режим освещения;

Органические вещества, связывающие абиотическую и биотическую составляющие в круговороте веществ;

Неорганические соединения, включенные в круговорот энергии;

Продуценты - это организмы, которые создают первичные продукты;

Фаготрофы - гетеротрофы, которые питаются другими организмами или большими частичками органического вещества;

Сапротрофы - гетеротрофы, способные разрушить мертвое органическое вещество, минерализовать его и возвратить в круговорот.

Совокупность последних трех компонентов формирует биомассу экосистемы.

Экосистема, свойства и которой изучаются в экологии, функционирует благодаря блокам организмов:

  1. Сапрофаги - питаются мертвым органическим веществом.
  2. Биофаги - поедают других живых организмов.

Устойчивость и биоразнообразие экосистем

Свойства экосистемы связаны с разнообразием видов, которые в ней обитают. Чем обширнее биоразнообразие и сложнее тем выше устойчивость экосистемы.

Биоразнообразие является очень важным, так как оно дает возможность формировать большое количество сообществ, отличающихся по форме, структуре и функциям, и обеспечивает реальную возможность их формирования. Поэтому чем выше биоразнообразие, тем большее количество сообществ может проживать, и тем большее количество биогеохимических реакций может осуществляться, обеспечивая при этом комплексное существование биосферы.

Верны ли следующие суждения о свойствах экосистемы? Для данного понятия характерны целостность, устойчивость, саморегуляция и самовоспроизводимость. Множество научных экспериментов и наблюдений дают утвердительный ответ на этот вопрос.

Продуктивность экосистем

Во время изучения продуктивности были выдвинуты такие понятия, как биомасса и урожай на корню. Второй термин определяет массу всех организмов, проживающих на единице площади воды или суши. А вот биомасса - это также вес данных тел, но в пересчете на энергию или сухое органическое вещество.

Биомасса включает тела целиком (в том числе и отмершие ткани у животных и растений.) Биомасса становится некромассой только тогда, когда умирает весь организм.

Сообщества - это образование биомассы продуцентами без исключения энергии, которую можно затратить на дыхание на единицу площади за единицу времени.

Выделяют валовую и чистую первичную продукцию. Разницей между ними являются затраты на дыхание.

Чистая продуктивность сообщества - это скорость накопления органики, которую не потребляют гетеротрофы, а вследствие, и редуценты. Принято вычислять за год или вегетационный период.

Вторичная продуктивность сообщества - это скорость накопления энергии консументами. Чем больше в экосистеме потребителей, тем в больших объемах перерабатывается энергия.

Саморегуляция

Свойства экосистемы включают в себя и саморегуляцию, эффективность которой регулируется разнообразием жителей и пищевых отношений между ними. Когда снижается количество одного из первичных консументов, то хищники переходят к другим видам, которые раньше для них имели второстепенное значение.

Длинные цепи могут пересекаться, создавая при этом возможность разнообразия пищевых отношений в зависимости от численности жертв или урожайности растений. В самые благоприятные времена численность видов может восстанавливаться - таким образом нормализуются отношения в биогеноценозе.

Неразумное вмешательство человека в экосистему может иметь отрицательные последствия. Завезенные в Австралию двенадцать пар кроликов за сорок лет размножились до нескольких сотен миллионов особей. Такое произошло из-за недостаточного количества хищников, которые ими питаются. В результате пушистые зверьки уничтожают всю растительность на материке.

Биосфера

Биосфера - это экосистема высшего ранга, объединяющая в одно целое все экосистемы и обеспечивающая возможность жизни на планете Земля.

Как глобальной экосистемы изучает наука экология. Важно знать, как устроены процессы, влияющие на жизнь всех организмов в целом.

В состав биосферы входят такие составляющие:

- Гидросфера - это водная оболочка Земли. Является подвижной и проникает всюду. Вода - уникальное соединение, которое является одной из основ жизни любого организма.

- Атмосфера - самая легкая воздушная граничащая с космическим пространством. Благодаря ей происходит обмен энергии с внешним пространством;

- Литосфера - твердая оболочка Земли, состоящая из магматических и осадочных пород.

- Педосфера - верхний слой литосферы, включающий почву и процесс почвообразования. Граничит со всеми предыдущими оболочками, и замыкает все циклы энергии и вещества в биосфере.

Биосфера не является замкнутой системой, так как она почти полностью обеспечивается солнечной энергией.

Искусственные экосистемы

Искусственные экосистемы - это системы, созданные в результате человеческой деятельности. Сюда входят агроценозы и природно-хозяйственные системы.

Состав и основные свойства экосистемы, созданной человеком, мало отличаются от настоящей. Она также имеет продуцентов, консументов и редуцентов. Но есть отличия в перераспределении потоков вещества и энергии.

Искусственные экосистемы отличаются от естественных такими параметрами:

  1. Намного меньшим количеством видов и явным преобладанием одного или нескольких из них.
  2. Сравнительно маленькой устойчивостью и сильной зависимостью от всех видов энергии (в том числе и от человека).
  3. Короткими пищевыми цепочками из-за маленького разнообразия видов.
  4. Незамкнутым круговоротом веществ из-за изъятия продукции сообщества или урожая человеком. В то же время естественные экосистемы, наоборот, включают в круговорот как можно большую его часть.

Свойства экосистемы, созданной в искусственной среде, уступают свойствам естественной. Если не поддерживать энергетические потоки, то через определенное время восстановятся природные процессы.

Экосистема леса

Состав и свойства экосистемы леса отличаются от других экосистем. В данной среде выпадает намного больше осадком, чем над полем, но большая их часть так и не достигает поверхности земли и испаряется прямо с листьев.

Экосистему листопадного леса представляют несколько сотен видов растений и несколько тысяч видов животных.

Растения, произрастающие в лесу, являются настоящими конкурентами и ведут борьбу за солнечный свет. Чем ниже ярус, тем более теневыносливые виды там поселились.

Первичными консументами являются зайцы, грызуны и птицы и крупные травоядные. Все питательные вещества, которые содержатся летом в листьях растений, осенью переходят в ветки и корни.

Также к первичным консументам относятся гусеницы и короеды. Каждый пищевой уровень представлен большим количеством видов. Очень важна роль травоядных насекомых. Они являются опылителями и служат источником питания для следующих уровень пищевых цепочек.

Экосистема пресного водоема

Самые благоприятные условия для жизнедеятельности живых организмов созданы в прибрежной зоне водоема. Именно здесь вода лучше всего прогревается и содержит больше всего кислорода. И именно здесь обитает большое количество растений, насекомых и мелких животных.

Система пищевых отношений в пресном водоеме очень сложная. Высшие растения употребляют растительноядные рыбы, моллюски и личинки насекомых. Последние, в свою очередь, являются источником питания для рачков, рыб и амфибий. Хищные рыбы питаются более мелкими видами. Здесь же находят для себя пищу и млекопитающие.

А вот остатки органики падают на дно водоема. На них развиваются бактерии, которых потребляют простейшие и фильтрующие моллюски.

Вспомните:

Роль растений, животных, грибов, бактерий в круговороте веществ.

Ответ. Растения, животные, грибы, бактерии тесно связаны между собой благодаря, прежде всего, пищевым связям. Растения, являясь автотрофами, производят органическое вещество, животные и грибы его потребляют, бактерии и отдельные виды грибов разрушают и минерализуют органические остатки, выделяя при этом в атмосферу углекислый газ, который в свою очередь будут потреблять растения, ровно также как и неорганические вещества. Так происходит перенос вещества и энергии в биогеоценозе, осуществляется круговорот веществ.

Вопросы после §41

Что называют экосистемой?

Ответ. Для удобства рассмотрения жизненных процессов в биосфере введено понятие "экологическая система" (экосистема). Экосистема представляет собой функциональное единство организмов и окружающей среды. Это совокупность различных видов растений, животных и микробов, взаимодействующих друг с другом и с окружающей средой – биотопом, содержащего вещество и энергию необходимые для жизнедеятельности.

Вся эта совокупность может сохраняться неопределенно долгое время. Экосистемой может быть любое сообщество живых существ и среда его обитания, объединенные в единое целое. Экологические компоненты системы взаимосвязаны и взаимозависимы. Нарушение функций одного из компонентов вызовет нарушение устойчивости всей экосистемы.

Экосистема представляет собой необходимую форму существования жизни. Любой организм способен развиваться только в экосистеме, а не изолированно.

Таким образом, экосистема - это любая совокупность взаимодействующих живых организмов и условий среды. Впервые термин "экосистема", как уже отмечалось, ввел английский эколог А. Тенсли в 1935 г. Экосистемами являются, например: участок леса, территория завода, фермы, кабина космического корабля или даже весь земной шар.

Какие группы организмов входят в состав любой экосистемы?

Ответ. В состав экосистемы входят живые организмы (их совокупность можно назвать биоценозом), неживые (абиотичекие) факторы – атмосфера, вода, питательные элементы, свет.

Все живые организмы по способу питания разделяются на две группы - автотрофов (от греческих слов аутос – сам и трофо – питание) и гетеротрофов (от греческого слова гетерос –другой).

Автотрофы используют неорганический углерод и синтезируют огранические вещества из неорганических, это – продуценты экосистемы

Гетеротрофы используют углерод органических веществ, которые синтезированы продуцентами, и вместе с этими веществами получают энергию. Гетеротрофы являются консументами (от латинского слова консумо – потребляю), потребляющими органическое вещество, и редуцентами, разлагающими его до простых соединений.

Редуценты – организмы, которые по своему положению в экосистеме близки к детритофагам, так как они тоже питаются мертвым органическим веществом. Однако редуценты – бактерии и грибы – разрушают органические вещества до минеральных соединений, которые возвращаются в почвенный раствор и снова используются растениями.

Органические вещества, созданные автотрофами служат пищей и источником энергии для гетеротрофов: консументы – фитофаги поедают растения, хищники первого порядка – фитофагов, хищники второго порядка – хищников второго порядка и т. д.Такая последовательность организмов называется пищевой цепью, ее звенья расположены на разных трофических уровнях (представляют разные трофические группы).

Чем экосистема отличается от биогеоценоза?

Ответ. В состав экосистемы входят живые организмы (их совокупность называют биогеоценозом или биотой экосистемы) , и неживые (абиотические) факторы - атмосфера, вода, питательные элементы, свет и мертвое органическое вещество - детрит.

Термин "биогеоценоз" предложил русский ученый В. Н. Сукачев. Этим термином обозначается совокупность растений, животных, микроорганизмов, почвы и атмосферы на однородном участке суши. Следует отметить, что их видовой состав и количество связаны, во-первых, с действием лимитирующих факторов, прежде всего климатических, определяющих, какие именно виды лучше всего приспособлены к существованию в тех или иных условиях, а во-вторых, с действием принципа эколого-географического максимума видов. Согласно этому принципу для нормального функционирования любой экосистемы в ней должно существовать столько и таких видов, сколько и каких необходимо для максимального использования приходящей энергии и обеспечения круговорота веществ.

Прежде всего, любой биогеоценоз выделяется только на суше. На море, в океане и вообще в водной среде биогеоценозы не выделяются. Биогеоценоз имеет конкретные границы. Они определяются границами растительного сообщества - фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия «экосистема» и «биогеоценоз» тождественны только для таких природных образований, как лес, луг, болото, поле. Лесной биогеоценоз = лесная экосистема; луговой биогеоценоз = луговая экосистема и т. п. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо там, где фитоценоз выделить нельзя, применяется только понятие «экосистема». Например, кочка на болоте - экосистема, но не биогеоценоз. Текущий ручей - экосистема, но не биогеоценоз. Точно так же только экосистемами являются море, тундра, влажный тропический лес и т. п. В тундре, тропическом лесу можно выделить не один фитоценоз, а множество. Это совокупность фитоценозов, представляющих более крупное образование, нежели биогеоценоз.

Экосистема может быть пространственно и мельче, и крупнее биогеоценоза. Таким образом, экосистема - образование более общее, безранговое.

Биогеоценоз же ограничен границами растительного сообщества - фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов.

Приведите примеры экосистем естественных и искусственных, водных и наземных, мелких и крупных.

Ответ. Экосистемы очень разнообразны. Естественные экосистемы: капля воды с микроорганизмами, лужица, болото, моховая кочка, старый пень, природные зоны (тундра, тайга, степь) , биогеоценозы, биоценозы, биосфера.

Искусственные экосистемы: космическая станция, сооружение для биологической очистки вод, водохранилище, аквариум, пшеничное поле, яблоневый сад.

Необходимы условием существования экосистемы является постояный приток энергии извне (открытая биосистема) . В ней совершается поток энергии и круговорот веществ.

Наземные биомы: тундра; хвойные леса; листопадный лес умеренной зоны; саванна. Пресноводные экосистемы: озера, пруды, ручьи. Морские экосистемы: океан; прибрежные воды.

Крупные экосистемы: биосфера, биогеоценоз, биомы. Мелкие экосистемы: пруд, огород, колки в степи.

Законы организации экосистем

В биоценозах живые организмы теснейшим образом связаны не только друг с другом, но и с неживой природой. Связь эта выражается через вещество и энергию.

Обмен веществ, как известно, одно из главных проявлений жизни. Говоря современным языком, организмы представляют собой открытые биологические системы, так как они связаны с окружающей средой постоянным потоком вещества и энергии, проходящим через их тела. Материальная зависимость живых существ от среды была осознана еще в Древней Греции. Философ образно выразил это явление в таких словах: “Текут наши тела, как ручьи, и материя постоянно обновляется в них, как вода в потоке”. Вещественно-энергетическую связь организма со средой можно измерить.

Поступление пищи, воды, кислорода в живые организмы - это потоки вещества из окружающей среды. Пища содержит энергию, необходимую для работы клеток и органов. Растения напрямую усваивают энергию солнечного света, запасают ее в химических связях органических соединений, а затем она перераспределяется через пищевые отношения в биоценозах.

Потоки вещества и энергии через живые организмы в процессах обмена веществ чрезвычайно велики. Человек, например, за свою жизнь потребляет десятки тонн еды и питья, а через легкие - многие миллионы литров воздуха. Многие организмы взаимодействуют со средой еще более интенсивно. Растения на создание каждого грамма своей массы тратят от 200 до 800 и более граммов воды, которую они извлекают из почвы и испаряют в атмосферу. Вещества, необходимые для фотосинтеза, растения получают из почвы, воды и воздуха.

При такой интенсивности потоков вещества из неорганической природы в живые тела запасы необходимых для жизни соединений - биогенных элементов - давно были бы исчерпаны на Земле. Однако жизнь не прекращается, потому что биогенные элементы постоянно возвращаются в окружающую организмы среду. Происходит это в биоценозах, где в результате пищевых отношений между видами синтезированные растениями органические вещества разрушаются в конце концов вновь до таких соединений, которые могут быть снова использованы растениями. Так возникает биологический круговорот веществ.

Таким образом, биоценоз является частью еще более сложной системы, в которую, кроме живых организмов, входит и их неживое окружение, содержащее вещество и энергию, необходимые для жизни. Биоценоз не может существовать без вещественно-энергетических связей со средой. В итоге биоценоз представляет с ней некое единство.

Любую совокупность организмов и неорганических компонентов, в которой может поддерживаться круговорот вещества, называют экологической системой , или экосистемой .

Природные экосистемы могут быть разного объема и протяженности: небольшая лужа с ее обитателями, пруд, океан, луг, роща, тайга, степь - все это примеры разномасштабных экосистем. Любая экосистема включает живую часть - биоценоз и его физическое окружение. Более мелкие экосистемы входят в состав все более крупных, вплоть до общей экосистемы Земли. Общий биологический круговорот вещества на нашей планете также складывается из взаимодействия множества более частных круговоротов. Экосистема может обеспечить круговорот вещества только в том случае, если включает необходимые для этого четыре составные части: запасы биогенных элементов, продуценты, консументы и редуценты .

Продуценты - это зеленые растения, создающие из биогенных элементов органическое вещество, т. е. биологическую продукцию, используя потоки солнечной энергии.

Консументы - потребители этого органического вещества, перерабатывающие его в новые формы. В роли консументов выступают обычно животные. Различают консументы первого порядка - растительноядные виды (фитофагов) и второго порядка - плотоядных животных (зоофагов).

Редуценты - организмы, окончательно разрушающие органические соединения до минеральных. Роль редуцентов выполняют в биоценозах в основном грибы и бактерии, а также другие мелкие организмы, перерабатывающие мертвые остатки растений и животных.

Разрушители мертвой древесины (жук бронзовка и его личинка; жук-олень и его личинка; большой дубовый усач и его личинка; бабочка древоточец пахучий и его гусеница; жук красный плоскотел; многоножка кивсяк; черный муравей; мокрица; дождевой червь)

Жизнь на Земле продолжается уже около 4 млрд лет, не прерываясь именно потому, что она протекает в системе биологических круговоротов вещества. Основу этого составляет фотосинтез растений и пищевые связи организмов в биоценозах. Однако биологический круговорот вещества требует постоянных затрат энергии. В отличие от химических элементов, многократно вовлекаемых в живые тела, энергия солнечных лучей, задержанная зелеными растениями, не может использоваться организмами бесконечно.

По первому закону термодинамики, энергия не исчезает бесследно, она сохраняется в окружающем нас мире, но переходит из одной формы в другую. По второму закону термодинамики, любые превращения энергии сопровождаются переходом части ее в такое состояние, когда она уже не может быть использована для работы. В клетках живых существ энергия, обеспечивающая химические реакции, при каждой реакции частично превращается в тепловую, а тепло рассеивается организмом в окружающем пространстве. Сложная работа клеток и органов сопровождается, таким образом, потерями энергии из организма. Каждый цикл круговорота веществ, зависящий от активности членов биоценоза, требует все новых поступлений энергии.

Таким образом, жизнь на нашей планете осуществляется как постоянный круговорот веществ, поддерживаемый потоком солнечной энергии. Жизнь организуется не только в биоценозы, но и в экосистемы, в которых осуществляется тесная связь между живыми и неживыми компонентами природы.

В лесах все растительноядные организмы (консументы первого порядка) в среднем используют около 10-12% ежегодного прироста растений. Остальное перерабатывается редуцентами после отмирания листвы и древесины. В степных экосистемах роль консументов сильно возрастает. Травоядные животные могут съедать до 70% общей надземной массы растений, не подрывая существенно скорости их возобновления. Значительная часть съеденного вещества возвращается в экосистему в виде экскрементов, которые активно разлагаются микроорганизмами и мелкими животными. Таким образом, деятельность консументов сильно ускоряет круговорот веществ в степях. Накопление мертвого растительного опада в экосистемах - показатель замедления скорости биологического круговорота.

Разнообразие экосистем на Земле связано как с разнообразием живых организмов, так и условий физической, географической среды. Тундровые, лесные, степные, пустынные или тропические сообщества имеют свои особенности биологических круговоротов и связей с окружающей средой. Водные экосистемы также чрезвычайно различны. Экосистемы отличаются по скорости биологических круговоротов и по общему количеству вовлекаемого в эти циклы вещества.

Моря представляют собой также гигантские сложные экосистемы. Несмотря на огромную глубину, они заселены жизнью до самого дна. В морях происходит постоянная циркуляция водных масс, возникают течения, у побережья действуют приливы и отливы.

Солнечный свет проникает лишь в поверхностные слои воды, ниже 200 м фотосинтез водорослей невозможен. Поэтому на глубинах живут лишь гетеротрофы - животные и бактерии. Таким образом, деятельность продуцентов и основной массы редуцентов и консументов сильно разобщена в пространстве. Мертвое органическое вещество в конце концов опускается на дно, но высвобождающиеся минеральные элементы возвращаются в верхние слои только в тех местах, где существуют сильные восходящие течения. В центральной части океанов размножение водорослей резко ограничивается недостатком биогенных элементов, и "урожайность" океана в этих районах такая же низкая, как в самых сухих пустынях.

Основной принцип устойчивости экосистем - круговорот вещества, поддерживаемый потоком энергии, - по сути дела обеспечивает бесконечное существование жизни на Земле.

По этому принципу могут быть организованы и устойчивые искусственные экосистемы, и производственные технологии, в которых сберегается вода или другие ресурсы. Нарушение согласованной деятельности организмов в биоценозах обычно влечет за собой серьезные изменения круговоротов вещества в экосистемах. Это главная причина таких экологических катастроф, как падение почвенного плодородия, снижение урожая растений, роста и продуктивности животных, постепенное разрушение природной среды.

Почва играет в наземных экосистемах прежде всего роль накопителя и резерва тех ресурсов, которые необходимы для жизни биоценоза. Экосистемы, которые не имеют почв, - водные, наскальные, на отмелях и отвалах - очень неустойчивы. Круговорот веществ в них легко прерывается и трудно возобновляется.

В почвах наиболее ценная часть - гумус - сложное вещество, которое образуется из мертвой органики в результате деятельности многочисленных организмов. Гумус обеспечивает долговременное и надежное питание растений, так как разлагается очень медленно и постепенно, освобождая биогенные элементы. Почвы с большим запасом гумуса отличаются высоким плодородием, а экосистемы - устойчивостью.

Неустойчивые экосистемы, в которых не сбалансирован круговорот вещества, легко наблюдать на примере зарастания прудов или мелких озер. В таких водоемах, особенно если в них смываются с окружающих полей удобрения, бурно развиваются и прибрежная растительность, и различные водоросли. Растения не успевают перерабатываться водными обитателями и, отмирая, образуют на дне слои торфа. Озеро мелеет и постепенно прекращает свое существование, превращаясь сначала в болото, а затем - в сырой луг. Если водоем небольшой, такие изменения могут протекать достаточно быстро, за несколько лет.